Continuous Trend-Based Classification of Streaming Time Series
نویسندگان
چکیده
Trend analysis of time series data is an important research direction. In streaming time series the problem is more challenging, taking into account the fact that new values arrive for the series, probably in very high rates. Therefore, effective and efficient methods are required in order to classify a streaming time series based on its trend. Since new values are continuously arrive for each stream, the classification is performed by means of a sliding window which focuses on the last values of each stream. Each streaming time series is transformed to a vector by means of a Piecewise Linear Approximation (PLA) technique. The PLA vector is a sequence of symbols denoting the trend of the series, and it is constructed incrementally. The PLA is composed of a series of segments representing the trend of the raw data (either UP or DOWN). Efficient in-memory methods are used in order to: 1) determine the class of each streaming time series and 2) determine the streaming time series that comprise a specific trend class. Performance evaluation based on real-life datasets is performed, which shows the efficiency of the proposed approach both with respect to classification time and storage requirements. The proposed method can be used in order to continuously classify a set of streaming time series according to their trends, to monitor the behavior of a set of streams and to monitor the contents of a set of trend classes.
منابع مشابه
Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملContinuous Trend-Based Clustering in Data Streams
Trend analysis of time series is an important problem since trend identification enables the prediction of the near future. In streaming time series the problem is more challenging due to the dynamic nature of the data. In this paper, we propose a method to continuously clustering a number of streaming time series based on their trend characteristics. Each streaming time series is transformed t...
متن کاملClassification of Streaming Fuzzy DEA Using Self-Organizing Map
The classification of fuzzy data is considered as the most challenging areas of data analysis and the complexity of the procedures has been obstacle to the development of new methods for fuzzy data analysis. However, there are significant advances in modeling systems in which fuzzy data are available in the field of mathematical programming. In order to exploit the results of the researches on ...
متن کاملFuzzy Data Envelopment Analysis for Classification of Streaming Data
The classification of fuzzy uncertain data is considered one of the most challenging issues in data analysis. In spite of the significance of fuzzy data in mathematical programming, the development of the analytical methods of fuzzy data is slow. Therefore, the current study proposes a new fuzzy data classification method based on fuzzy data envelopment analysis (DEA) which can handle strea...
متن کاملFuzzy Data Envelopment Analysis for Classification of Streaming Data
The classification of fuzzy uncertain data is considered one of the most challenging issues in data analysis. In spite of the significance of fuzzy data in mathematical programming, the development of the analytical methods of fuzzy data is slow. Therefore, the current study proposes a new fuzzy data classification method based on fuzzy data envelopment analysis (DEA) which can handle strea...
متن کامل